XGBoost-based Method for Seizure Detection in Mouse Models of Epilepsy

1. School of Computer Science, University College Dublin, Dublin, Ireland
2. Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
3. FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI, Dublin, Ireland
4. School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland

Background

- Epilepsy is the second most common neurological disorder behind stroke, according to the World Health Organization (WHO).
- Epilepsy is caused by the dysregulation of the finely tuned inhibitory and excitatory balance in brain networks, manifesting clinically as seizures.
- Electroencephalographic (EEG) monitoring in rodent disease models of epilepsy is critical in the understanding of disease mechanisms and the development of anti-seizure drugs.
- Seizure detection with EEG requires a direct examination by a physician and substantial amount of time and effort.
- Automated detection is a powerful method to devote to this task which can reduce the annotation time of experts.
- Research on seizure detection methods applicable to multiple mouse models has been limited to date.
- In this study, an automated method for seizure detection in EEGs from different mouse models of epilepsy is proposed.

Method

- Teager-Kaiser energy operator (TKEO)-based method
 - The discrete TKEO is defined as:
 \[\phi(x_t) = x_t^2 - x_{t-1} \cdot x_{t+1} \]

- XGBoost-based method

Results

| Mouse Model I: Intra-amygdala kainic acid (IAKA) Adult male SV129 |
|---------------------|---------------------|
| EEG signals were recorded in each mouse for 14 days, with 20 minutes of baseline on the first day. After a week, the intraperitoneal lorazepam (8 mg/kg) was injected to reduce morbidity and mortality. Following a latent period of 3-5 days, spontaneous recurrent seizures started to appear. |

| Mouse Model II: Dravet Syndrome (DS) F1.5 Scn1a+/−/Tm1Kea |
|---------------------|---------------------|
| Mice were bred with a mutation which mimics DS, a rare and severe epileptic encephalopathy. DS, F1.5 Scn1a+/−/Tm1Kea experience recurrent spontaneous seizures. These were recorded using tethered EEG monitoring from 12:30 to 6:30 pm between postnatal days p21-p28. |

Conclusion

- XGBoost-based method performed better than TKEO-based method in both mouse models of epilepsy
- A novel XGBoost-based method to detect seizures
- Assist researchers in the automated analysis of seizures in mouse models of epilepsy
- Single-channel, multi-type seizures in long mice EEG recordings
- Removes user bias when detecting seizures
- Fast, reliable, reproducible

Future work

- The method need to be validated in data sets from:
 - Larger numbers of mice
 - Different mouse models of epilepsy

Acknowledgements

This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3948 and co-funded under the European Regional Development Fund and by FutureNeuro Industry partners. This work has been supported by the European Union Seventh Framework Programme (FP7) EpimIRRA project under grant agreement 602130. GM is supported by a Marie Skłodowska-Curie Actions Individual Fellowship ‘EpiMiTherapy’, H2020-MSCA-IF-2018 840262. We acknowledge the Research IT and HPC Services at University College Dublin for providing computational facilities and support that contributed to the research results reported in this paper.